Automated Snippet Generation for Online Advertising

S. Thomaidou¹, I. Lourentzou^{1, 2}, P. Katsivelis-Perakis^{1,3}, M. Vazirgiannis^{1,4} ¹Athens University of Economics and Business, ²University of Illinois at Urbana-Champaign, ³Harokopion University of Athens, ⁴Ecole Polytechnique, Paris

Motivation

- Advertise products, services or brands alongside the search results
- Recently smaller displays on devices like tablets and smartphones have imposed the need for smaller ad texts
- Produce a small comprehensive ad while maintaining at the same time relevance, clarity, and attractiveness

Sentence Template

- Build permutations of the best n-grams in order to add them to the final representation, assuring the limitation of 70 chars
- Two possible templates necessary slots and value of price if it is provided
 - a. <feature set> <price>

Provide an efficient solution for large websites or e-shops

Proposed Methodology

- Information Extraction for mining the most important product or service keywords
- 2. Sentiment Analysis for keeping the most positive phrases that will have a good impact on the product image
- **3. Natural Language Generation** for constructing a good form of the final ad-text sentences

Information Ranking Function

Adoption of the formula for the two previous templates:

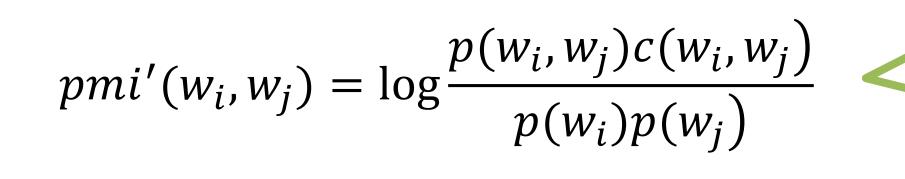
<product name> with <feature set> <price>

a.
$$I_i(c) = \frac{1}{n + \frac{70}{l(c)}} \sum_{i=0}^n s_i$$

b. $I_i(c) = \frac{1}{n + \frac{70}{l(c)}} \max_{0 < i < n} s_i + \sum_{i=0}^n s_i$

• Measures Information Gain - Penalizes little utilization of space

Information Extraction


Modified Pointwise Mutual Information Function based on Ganesan et al. 2012

 $pmi(w_i, w_j) = \log \frac{p(w_i, w_j)}{p(w_i)p(w_j)} \leq$

Original PMI function measures strength of association between words

Readability Ranking with an Advertising Language Model

- Advertising Language Model of 47.984 unique ads obtained from major search engines (queries from Google Products Taxonomy)
- Feed SRILM with the above snippets LM based on trigrams
- For each candidate keep its logarithmic probability as the value of the Readability Ranking Function, which is an indication of the likelihood that a given candidate will occur

Rewards well associated words with high cooccurrence

 How well a phrase represents the given webpage - For each n-gram is the sum of the modified pointwise mutual information of every bigram that this n-gram contains, normalized by the total unigram length

 $Representativeness(w_i, \dots, w_n) = \frac{1}{n} \sum_{i=0, j < i}^{n} pmi'(w_i, w_j)$

Sentiment Analysis

- Usage of Amazon Sentiment Dataset Determine the contextual polarity of a phrase
- Select the top k informative words as features, by measuring the Information Gain of each word
- Using all words as features provided better accuracy in the test set than choosing the top k informative words
- Remove all extracted keyphrases that were classified by our model as negative

Generated Promotional Text

Method	Product Name	Snippet
IE+NLG	VIZIO ESeries HDTV	VIZIO ESeries with effective refresh rate, Low Price Guarantee
IE+NLG+SA	Fuji Film Finepix JX580	Artistically enliven photos, instantaneously increases shutter speed

Evaluation of Advertising Text Criteria

Method	Attractiveness	Clarity	Relevance	Harmonic Mean
IE	0.387	0.667	0.660	0.538
IE+HG	0.253	0.693	0.517	0.410
IE+SA	0.433	0.697	0.680	0.575
IE+HG+SA	0.293	0.647	0.550	0.443
IE+NLG	0.527	0.854	0.943	0.726
IE+NLG+SA	0.593	0.850	0.937	0.763
IE+CP	0.257	0.617	0.423	0.381

Content Determination

- Choose only the best n-grams N-grams that contain only verbs (in any form or tense) are removed from the n-gram list
- Use of Stanford Part-of-speech Tagger to eliminate n-grams of low readability - n-grams that contain sequences of five or more nouns in a row might have been erroneously extracted from the landing page

Further Challenges

- Enrichment of the corpus for a more complete Language Model
- Classification of products and services
- Evaluation using Click-through Rate (CTR) from advertising campaigns

The research of S. Thomaidou is co-financed by the European Union (ESF) and Greek national funds via Program Education and Lifelong Learning of the NSRF - Program: Heracleitus II.

Prof. M. Vazirgiannis is partially supported by the DIGITEO Chair grant LEVETONE in France.

